Oxidation and Bromodehydroxymethylation of Benzylic Alcohols Using NaBrO3/NaHSO3 Reagent.
نویسندگان
چکیده
منابع مشابه
Oxidation of benzylic alcohols with molecular oxygen catalyzed by Cu3/2[PMo12O40]/SiO2
The aerobic oxidation of alcohols was efficiently completed in high conversion and selectivity using Cu3/2[PMo12O40]/SiO2 as catalyst under mild reaction condition. This reaction provides a new environmentally friendly rout to the conversion of alcoholic function to carbonyl groups.
متن کاملOxidation of benzylic alcohols with molecular oxygen catalyzed by Cu3/2[PMo12O40]/SiO2
The aerobic oxidation of alcohols was efficiently completed in high conversion and selectivity using Cu3/2[PMo12O40]/SiO2 as catalyst under mild reaction condition. This reaction provides a new environmentally friendly rout to the conversion of alcoholic function to carbonyl groups.
متن کاملA comparative study of catalytic properties of ZnO and FeZnO nanoparticles on Oxidation of Benzylic alcohols: Influence of doped metal
Novel nano-catalysts (Nano ZnO and Fe doped ZnO (Fe(0.1)Zn(0.99)O) synthesized by co-precipitation method in aqueous solution as new nanocatalysts and characterized by common techniques as FTIR, XRD, SEM and UVD. The size of particles obtained from XRD data is 27 and 16 nanometers for ZnO and Fresno respectively. Influences of doped Fe on ZnO catalytic properties in oxidation of Benzylic alcoho...
متن کاملOxidation of allylic and benzylic alcohols to aldehydes and carboxylic acids.
An oxidation of allylic and benzylic alcohols to the corresponding carboxylic acids is effected by merging a Cu-catalyzed oxidation using O2 as a terminal oxidant with a subsequent chlorite oxidation (Lindgren oxidation). The protocol was optimized to obtain pure products without chromatography or crystallization. Interception at the aldehyde stage allowed for Z/E-isomerization, thus rendering ...
متن کاملSynthesis and Comparative Catalytic Study of Zirconia–MnCO3 or –Mn2O3 for the Oxidation of Benzylic Alcohols
We report on the synthesis of the zirconia-manganese carbonate ZrOx(x %)-MnCO3 catalyst (where x=1-7) that, upon calcination at 500 °C, is converted to zirconia-manganese oxide ZrOx(x %)-Mn2O3 . We also present a comparative study of the catalytic performance of the both catalysts for the oxidation of benzylic alcohol to corresponding aldehydes by using molecular oxygen as the oxidizing age...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ChemInform
سال: 2003
ISSN: 0931-7597,1522-2667
DOI: 10.1002/chin.200315066